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Bifurcations of a semiclassical atom in a periodic field
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The dynamics of an electron moving in the Coulomb field of a nucleus and a strong periodic field is studied
in a semiclassical model. Hamiltonian equations of motion are derived using Gaussian wave functions, a
variational principle, and an adiabatic approximation for the width of the wave packets. Predictions for the
ionization probability are found to agree rather well with exact calculations in the barrier supression regime. By
introducing dissipation and fluctuation the model atom is considered as an open system. For the dissipative
system we investigate the bifurcations in dependence on strength and frequency of the external field. A quite
complex bifurcation scenario is obtained. The sensitivity with respect to noise is also studied.
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I. INTRODUCTION

Many experimental and theoretical studies of periodica
driven atoms have been made to understand a variety of
tures, e.g., higher harmonic generation or stabilization p
nomena@1,2#. The classical electron dynamics plays an i
portant role in the investigation of highly excited atom
electrons in a periodical field@3#. The underlying potentia
especially for one-dimensional calculations has to have s
eral properties—the absence of the singularity at the or
and the asymptotic Coulomb-like behavior. A widely us
form that satisfies these conditions is the so-called ‘‘soft-c
potential’’

V~r !5
1

Ar 21«22
. ~1!

Here« is the ground-state energy of the atom. Many oth
choices satisfying the above conditions are possible.

From a time-dependent variational principle we derive
adiabatic Hamiltonian describing the motion of a semiclas
cal electron. This Hamiltonian differs slightly from Eq.~1!.
Note that Eq.~1! is anad hocintroduced potential, wherea
the semiclassical adiabatic approximation~SAA! presented
in this paper follows from physical principles. In the follow
ing we investigate the semiclassical electron dynamics
different kinds of atomic potentials. We will analyze in deta
the bifurcations in dependence on the electric field stren
and the frequency of the external laser field. It will be sho
that slight differences in the shape of the potential lead
drastic changes in the dynamics of the system.

II. HAMILTONIAN DYNAMICS

A. Semiclassical approximation

The Hamiltonian operator describing a one-electron at
in a periodical field is given by

Ĥ5
p̂

2
2

Z

r
1V~ r̂ ,p̂,t !. ~2!
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For all further calculations we use atomic units (e5me5\
51). The laser field is treated in the dipole approximatio
where only linearly polarized light is considered

V̂~r ,t !5E0•r sinvt. ~3!

Here the vectorE0 defines the direction and the amplitude
the external field. One possible semiclassical description
this problem is based on an approximation for the parti
wave function containing time-dependent parametersq(t),
which represent the coordinates in a generalized phase sp
This technique has been widely applied in quantum mole
lar dynamics to study problems in plasma physics@4–9# and
nuclear physics@10,11#. The dynamics of the parameters
described by the time-dependent variational principle@12#

dE
t1

t2
^cu i

d

dt
2Ĥuc&dt50. ~4!

The equations of motion can be written in the general fo
@12#

q̇m5(
n

Amn
21 ]H

]qn
, ~5!

where the Hamiltonian functionH is defined as the expecta
tion value of the HamiltonianĤ

H5^cuĤuc&. ~6!

As a trial wave function we choose a Gaussian wave pac

c~q;r ,p,b,pb!5S 3

2pb D 3/4

expF2S 3

4b
1 ipbD ~q2r !2

2 ip•~q2r !G . ~7!

Hereb andpb parametrize the complex width of the distr
bution, while r and p are the average position and avera
momentum, respectively. With this choice of the wave fun
tion the matrixAmn

21 is of canonical form
©2002 The American Physical Society28-1
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Amn
215S 0 21

1 0 D , ~8!

which leads to a Hamiltonian-like dynamics for the para
eters with the following semiclassical Hamiltonian:

H5
p2

2
2

Z

r
erfS rA 3

2b D 12pb
2b1

9

8b
1E0•r sinvt.

~9!

If the electric field is chosen to be directed along ther 3 axes
@r5(r 1 ,r 2 ,r 3)# and cylindric coordinates are introducedx
5r 3 , y5Ar 1

21r 2
2, tanf5r 2 /r 1), we obtain from the

Hamiltonian@Eq. ~9!# the following equations of motion:

ẋ5px ,

ṗx52Z
x

r 3 FerfS rA 3

2b D 2A 6

pb
r expS 2

3r 2

2b D G
1E0 sin~vt !,

ẏ5py ,

ṗy52Z
y

r 3 FerfS rA 3

2b D 2A 6

pb
r expS 2

3r 2

2b D G ,
ḃ54pbb,

ṗb5
9

8b2
22pb

22ZA 2

2pb3
expS 2

3r 2

2b D . ~10!

Using this form of dynamical equations the width of th
wave packet provides an additional degree of freedom. T
fact leads to a divergent partition sum and to wrong pred
tions for the thermal capacity fulfilling neither the classic
nor the quantum limit. Thus, modifications of Eq.~10! are
necessary to solve these problems. The simplest possibil
to fix the width at the value that gives the minimum groun
state energy. Introducing a new parameterr 0

252b/3, this
condition is fulfilled for

r 05
3

4Z
Ap ~11!

with a groundstate energy of«0520.424Z2, which is about
15% higher than the exact value provided by quantum m
chanics. From the fixed width arises the problem, that
ionization energy obtained from Eq.~9! does not agree with
quantum-mechanical predictions. The third summand in
~9!, the so-called curvature energy, leads to an ioniza
energy of«B50.848Z2.

In order to avoid these difficulties we introduce a SA
which is based on the assumption of a slowly varying wid
of the wave packet. From the conditionpb50 we find for
given r andp the following expression forr 0:
04622
-
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r 05
3

4Z
Ap expS r 2

r 0
2D . ~12!

This adiabatic approximation solves the problem of t
wrong ionization energy as well as the problems of the
ditional degree of freedom. To get an explicit expression
the width of the wave packet we expand Eq.~12! in r 0 and
obtain

r 05 3
8 Ap1 1

8 A9p164r 2. ~13!

For testing the result we perform the limitZ→0, which cor-
responds to a free electron in a linearly polarized laser fie
By substituting the solution of Eq.~10! in Eq. ~7! we obtain
the Volkov wave function in the long wavelength approxim
tion

c5expS ip•r2 i
p2

2
t2 i

E0
2

4v2
t1 i

E0px

v2
sinvt

2 i
E0

2

8v3
sin 2vt D , ~14!

which is the exact quantum-mechanical solution for t
problem. As mentioned above the SAA predicts an ionizat
energy that is smaller than the exact energy provided
exact quantum theory. With respect to this property the S
seems to be worse than the soft-core potential to desc
atom light interactions. However, the atomic potential sho
also give good predictions for the polarizability of the ato
defined by

a5
p

E
, ~15!

wherep is the dipole moment resulting from the static ele
tric field E. Quantum-mechanical perturbation theory pr
dicts for the hydrogen ground state a value ofa54.5 a.u.
Using a harmonic expansion of the semiclassical potent
the polarizability can be estimated bya5e2/v0

2. The soft-
core potential fitted to the exact ground-state energy yie
a58 a.u., which is about two times higher than the ex
value. Our SAA potential based on a Gaussian wave pa
leads toa53.1 a.u., which is only 30% of the exact valu

B. Free oscillations

The equations of motion@Eq. ~10!# can be rescaled to th
atomic hydrogen case by the substitutions

x̃5Zx, ỹ5Zy, b̃5Z2b,

p̃x5Zpx /Z, p̃y5Zpy /Z, p̃b5pb /Z2,

Ẽ05E0 /Z3, ṽ5v/Z2, t̃ 5Z2t. ~16!

For that reason we will consider the case of a hydrogen a
Z51 for all further calculations. Figure 1~a! shows the shape
of the SAA potential compared to the ‘‘soft-core’’ potentia
8-2
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FIG. 1. Comparison of certain properties of different atomic potentials. The spatial shape~a!, the leading coefficents in a Taylo
expansion~b! and the frequency of free linear oscillations as a function of the corresponding amplitude are shown for different t
potentials. In~b! the results for the three potentials derived from Eq.~1! ~diamonds!, Eqs.~9!,~11! ~open circles!, and Eqs.~9!,~13! ~full
circles! are shown.
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The principle shape of both potentials looks very similar. B
a more detailed analysis of the short distance behavior, g
by the leading coefficientsak in a Taylor expansion@Fig.
1~b!#, as well as the asymptotic behavior shows signific
differences, which may lead to very different dynamical b
havior at high and low energies. Furthermore, the relativ
good agreement of the coefficientsak for the potentials de-
rived from Eqs.~11! and~13! gives rise to the expectation o
similar dynamics at small distances. The asymptotic beha
of the ‘‘soft-core’’ potential is given by

V~r !52
1

r
1

8r 0
4

9

1

r 3
2

32r 0
8

27

1

r 5
1•••, ~17!

whereas the potentials derived from the variational princi
converge to2Z/r exponentially. As we will show processe
such as ionization or stabilization phenomena, are domin
by the asymptotic behavior, whereas the higher harmo
spectrum is caused by the shape of the potential at s
distances@3#. Using the Lindstedt-Poincare´ method the main
frequency of the one-dimensional free oscillations can
expanded as@13#

v5Aã1S 11
9ã1ã3210ã2

2

24ã1
2

A21••• D , ~18!
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whereA is the amplitude of the single harmonic term in th
solution andãk are coefficients in a Taylor series of th
atomic force. A comparison of the eigenfrequencies for
three potentials is given in Fig. 1~c!.

C. The action of the external field

The action of strong external fields gives rise to essen
changes of the atomic dynamics. The approximation p
posed here reduces the problem to the classical dynamic
an oscillating two-dimensional potential well. As show
above, in the limit of very large fields or forZ→0 the model
is exact, since the Volkov wave function is reproduced. F
smaller fields however, the electron feels the details of
atomic model potential. Due to the different degree of no
linearitiy of the ‘‘soft-core’’ and the other two potentials
periodic perturbation applied to these atomic forces will le
to different results. To prove this we use a stroboscopic Po
caréplot of the perturbed trajectories. The initial condition
are choosen in a way as to obtain oscillations along the
larization direction of the electric field (y5py50). For the
potentials described by Eqs.~9! and~11! and by Eqs.~9! and
~13! we found two different resonant orbits, where one or
corresponds to the inner black dots in Fig. 2~a!. The other
orbit lies outside of Fig. 2~a! similar to that one in Fig. 2~b!.
The transition in form of chaotic layers between the tw
e
FIG. 2. Stroboscopic Poincar´
plot for different initial conditions
for the potentials calculated from
Eqs. ~9! and ~13! ~a! and Eq.~1!
~b! for E050.01 a.u. and v
50.1 a.u.
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orbits is also shown. For the ‘‘soft-core’’ potential neith
ultraharmonic nor subharmonic resonance has been obse
in this parameter regime. The corresponding single harmo
orbits are shown in Fig. 2~b!. Due to 1/r behavior of the
potentials, the phase space is divided into two regions co
sponding to closed orbits and open trajectories diverging
infinity. If an external field is applied, a transition between
closed orbit and the open trajectories may occur. Dur
some cycles of the external field an amount of energy
transferred to the electron until it escapes over the bar
formed by the atomic field and the laser field. As mention
above the potential derived from Eq.~9! is not very useful to
describe ionization processes. That is why we consider o
the ‘‘soft-core’’ and the ‘‘adiabatic appoximation’’ potentia
Such a separatrix, which divides the space of initial con
tions into two parts of bound and free motions, for an inst
taneously switched on field att50 is shown in Fig. 3 for two
different external field strengths, wherey5py50. Here the
electron is considered as ionized if its energy without
contribution of the external field changes to positive valu
We see again that different atomic potentials can lead
much different results. The asymmetry of the separatrix
finite fields arises from the initial phasef of the external
field, which is set tof50 for the calculations in Fig. 3. If
one considers the phase of the field as an additional degre
freedom the separatrix becomes symmetric in this high
dimensional space.

For an investigation of the ionization process in more
tail we measured the time needed for a transition from
bounded to an unbounded state. This time is estimated by
time t at which the energy of the electron changes to posi
values. The inverse of this characteristic time gives an e
mation of the ionization rate in this semiclassical pictu
The resulting dependence on the external frequency for b
potentials is shown in Fig. 4. The simulations were star
from the atomic ground state that corresponds top(0)
5r (0)50. One can see that for both potentials a stabili
tion takes place at higher frequencies of the external field
to a dynamical trapping of the electron. For a critical fr
quencyvc , the ionization rate decreases rapidly. Here

FIG. 3. Separatrix corresponding to closed orbits and open
jectories derived for the ‘‘soft-core’’ potential~thin lines! and for
the SAA potential~thick lines!.
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electron is bound for half of a cycle of the external fie
longer than forv,vc . At this frequency the electron energ
becomes positive exactly after one half cycleT52p/v of
the external field. For frequencies larger thanvc the electron
is slowed down by the field att.T/2 due to the phase dif
ference between the electron motion and the external ele
field. This leads to the rapid decrease of the ionization r
beyondvc . For a further increasing frequency the ionizatio
rate increases until the electron motion is again in phase w
the external field. The inverse times 2/T and 1/T are also
shown in Fig. 4 to underline the above statements. This
namical stabilization is purely a classical effect. In a rec
work a method similar to the Feynman path-integral form
ism has been developed to describe the electron energy s
trum in the final state@14#. These calculations are based o
classical electron trajectories weighted with a complex nu
ber whose phase is equal to the classical action along
trajectory. The observed energy spectrum of the ejected e
trons is very well described by this theory. This shows th
the classical electron motion is essential for certain effect
atom-light interaction. Thus, we expect that the classical
bilization effect plays a role in quantum-mechanical ioniz
tion processes. As can be seen from Fig. 4 both atomic
tentials lead, in principle, to the same ionization behav
But, again there are quantitative differences between b
atomic models. In some frequency interval the ionization r
calculated from the SAA model is less than the rate obtai
with the ‘‘soft-core’’ potential although the binding energy o
the ‘‘soft-core’’ potential is larger than for the SAA potentia
This means that the study of ionization of atoms by stro
laser fields as done in@2# with the ‘‘soft-core’’ potential as
well as the investigation of the higher harmonic spectrum@3#
depend on the choice of the underlying atomic model.

D. Comparison with quantum calculations

In order to check the validity of the proposed model w
will compare the predicted ionization behavior of the sem
classical model atom with numerical solutions of the tim

a- FIG. 4. Ionization rate as a function of external frequency
the ‘‘soft-core’’ ~a! and the SAA potential~b! for a field strength of
E050.2 a.u. The inverse times 2/T ~solid line! and 1/T ~dotted
line! are also shown.
8-4



s
ee
in
ha
a
e
on
ul
d
la
t

at

s

in
on
be
c-
ou
up
,
ca
e

ic

q.

b

e
-
ri
rly
pl

ly

rg
th

the
dis-
the

he
I
ion
er-
y

we
del
we

thin
the

tion

.

by
tial

the

f

BIFURCATIONS OF A SEMICLASSICAL ATOM IN A . . . PHYSICAL REVIEW E65 046228
dependent Schro¨dinger equation. Additionally, the result
will be compared with quantum results for the Coulomb-fr
case@15# to demonstrate the importance of the Coulomb
teraction. The definition of the ionization rate used above
been successfully applied to the problem of electron imp
ionization in plasmas@8#. Since quantum effects becom
more important for the case of photon electron interacti
no quantitative agreement with quantum-mechanical calc
tions can be expected. However, the dynamical trapping
scribed above should also occur in more realistic calcu
tions, and might be the reason for discrepancies between
numerically calculated ionization rates and the quasist
theory in the barrier supression regime@16#. The importance
of this classical effect might be proven by numerical inve
tigations of the time-dependent Schro¨dinger equation.

The main reason for possible discrepancies with exact
vestigations is the fact that the used wave packets can
have one maximum. Thus, tunneling cannot be descri
within this model. But for sufficiently large fields, the ele
tron is able to escape over the barrier formed by the C
lomb potential and the laser field. This so-called barrier s
pression ionization~BSI! is much faster than tunneling
which is dominant for weaker fields. In this regime, classi
and semiclassical pictures have been found to work w
@15,17#. The probability to find the electron in its atom
ground state at the timet is given by

P~ t !5u^c~x,0!uc~x,t !&u2, ~19!

wherec(x,0) is the ground-state wave function. Using E
~7! for the time-dependent wave function, we get

P~ t !5S 36b0b

D D 3/2

expH 23

2D
@~9B1pbC!r 2

14b0bBp22Cr•p#J . ~20!

Here b0527p/32Z2 follows from Eq. ~11! and B5b01b,
C516pbb0b2 andD59B21pbb0C. From this equation we
calculate the ground-state population as a function of time
evaluating the parameters according to Eq.~10! with r (0)
5p(0)5pb(0)50 andb(0)5b0 to obtain the best possibl
ground-state properties. In@18# the three-dimensional time
dependent Schro¨dinger equation has been solved nume
cally, for the problem of an one-electron atom in a linea
polarized laser field. In this work the authors found a sim
semiempirical formula forP(t) by a fit to their numerical
solution. To compare our result with this formula, we app
the pulse shape used in@18#

E~ t !5E0 sinvt expS 2
~ t2t0!2

s2 D , ~21!

where t05Np/v and s25t0
2/ln 20. In Fig. 5 we compare

our results with the formula of Bauer and Mulser@18# for
different laser pulses. For a ground-state population la
than 50%, the degree of agreement is similar to that with
exact solution of the Schro¨dinger equation~see @18#!. For
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P(t),0.5 the ground-state population given by Eq.~20! de-
creases to fast with increasing time. This is mainly due to
fact that the ground-state properties of the atom at large
tances from the core are not very well described by
Gaussian approximation.

Let us now study the properties of the light emitted by t
oscillating electron. In@15# it has been shown that in the BS
regime even the first laser cycle gives the main contribut
to the dipole acceleration, which is known to directly det
mine the coherent part of the emitted light spectral energ

Ev}ud̈vu2, ~22!

where v is the frequency of the emitted light,Ev is the
energy per frequency, and

d̈v5E
0

`

d̈~ t !eivtdt ~23!

is the Fourier transform of the dipole acceleration. Since
have shown that in the BSI regime the wave packet mo
does describe the ionization process for this time interval,
expect that the emission of light can also be described wi
the proposed model. According to the wave packet model
expectation value of the operator of the dipole accelera
] ttd̂(t)5Zx/x32E(t) is given by

d̈~ t !52E~ t !2“Ve f f~r !, ~24!

where the effective potential is given by

Ve f f~r !52
Z

r
erfS r

r D , ~25!

and the parametersr and r5A2b/3 are determined by Eq
~10! with r (0)50 andr(0) is given by Eq.~11!. In @15# the
dipole acceleration for the BSI regime has been calculated
an expansion in terms of the interatomic Coulomb poten

FIG. 5. Comparison between the time dependence of
ground-state population obtained from Eq.~20! and the quantum
result found in@18#, for E050.5, N56, v50.2 ~a!, E050.3, N
56, v50.2 ~b!, E050.5, N512, v50.2 ~c! and E050.3, N
512, v50.2 ~d!. The time is shown in units of the period length o
the external field.
8-5
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and by approximating the initial ground state by
Gaussian. In this work the authors arrive at Eqs.~24! and
~25! where the parameters are determined by the field-
motion of the wave packetr (t)5*0

t E(t8)dt8 and r(t)
5Ar(0)21t2/r(0)2. By demanding a maximal overlap be
tween the initial Gaussian and the exact ground-state w
function they obtainedr(0)51.35/Z, which slightly differs
from Eq. ~11! r(0)51.33/Z. In Fig. 6 we compare the spec
tral energy of the emitted light obtained from Eqs.~24! and
~25! with the calculations in@15#. The results are much dif
ferent. In Fig. 6~a! the strength of higher harmonics d
creases rapidly due to the monotone increase of the w
packet spreading. In contrast to this first order perturba
result, the spectral energy in Fig. 6~b! clearly shows a gen
eration of higher order harmonics. Since the ionization rat
large for the used laser parameters, the efficiency of hig
harmonic generation is low. Thus, the sharp plateau struc
of the energy spectrum cannot be observed in the BSI
gime. In Fig. 6~b! we can identify a weak plateau until

FIG. 6. Comparison of the spectral energy of the emitted li
obtained from a first order perturbation theory proposed in@15# ~a!
and from the wave packet model presented in this work~b!. The
field parameters areE050.845, v50.5, s56p/v and t0

59.66p/v. The frequency is shown in units of the frequency of t
external field.
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frequency ofvc54.5v. This frequency corresponds to a
energy of 2.25 a.u., which is equal to 2.63Up10.5, where
Up5Emax

2 /4v2 is the maximum ponderomotive energy. N
tice that this result differs by 17.8% from the 3.2Up1EB law
for the higher harmonic cutoff in the tunneling ionizatio
regime, which has been verified in various experiments
by theoretical studies@19#. As well known the generation o
these higher harmonics is due to recombination of the
sidual ion and the electron that moves under the influenc
the external field in the vincinity of the nucleus. This can
seen from the peaks occurring in the time evolution of
ground-state population~see Fig. 7!. As can be also seen in
Fig. 7, the ground-state population calculated from
Coulomb-free wave packet dynamics according to the fi
order perturbation approach in@15,20# disagrees with the for-
mula in @18# and the recombination peaks completely disa
pear, which explains the absence of higher harmonics in
6. In @20# excellent agreement between the Coulomb-f
wave packet dynamics and numerical solutions of the tim
dependent Schro¨dinger equation has been found, for the ca
of a one-dimensional smoothed short range potential. Bu
we have shown, this approach fails to predict the ionizat
behavior of a three-dimensional Coulomb atom, which u
derlines again the importance of the properties of the u
model potential.

A detailed study of these effects including interferen
effects and extending the model to the tunneling regime
subject to future work. However, the above investigatio
show that the wave packet model known from plasma ph
ics is applicable in strong field atomic physics beyond
BSI regime. Having established the applicability of the sem
classical wave packet model to atom-light interaction
now study the electron dynamics from a more general po
of view. Not all the following semiclassical results are esse
tial for real quantum-mechanical situations, but neverthel
they give interesting insight into the complex dynamic
properties of the atomic system.

t

FIG. 7. Ground-state population as a function of time obtain
from the presented wave packet model~solid line!, from the first
order perturbation approach of@20# ~dashed line!, and from the
quantum formula obtained in@18# ~dotted line!. The field param-
eters are the same as in Fig. 6. The time is shown in units of
period length of the external field.
8-6
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III. DISSIPATIVE DYNAMICS

Up to this point the atom is considered as an isola
system only interacting with the laser field. Now we emb
the model atom in a system consisting of many subsyst
of the same type as our single atom to model a dense pla
Each electron may carry out a free motion or is bound to
nucleus. Due to the interaction with this enviroment the el
tron is subject to dissipation. A full description of the diss
pative processes requires the formulation of a quantum
netic theory for atoms embedded into a plasma as given,
by Klimontovich @21#. Such a complicated approach is b
yond the scope of this paper. Here we prefer, therefore
semiphenomenological approach, which is based on appr
mative solutions of the kinetic equations assuming weak
viations of the plasma from equilibrium. This so-calle
Spitzer approach is described, for example, in@21,22#. As a
result the complicated interaction between the moving e
tron and the plasma is described by a linear friction te
which is introduced into the Hamiltonian dynamics@Eq.
~10!#,

ṗi52
]H

]r i
2gpi . ~26!

The friction constantg is somehow related to the frequenc
of the collisions with the surrounding electrons. In the fram
work of the kinetic theory the average collision frequen
may be estimated by the formula

g5
4A2pne4L

3me~kT!3/2
. ~27!

Here n is the density of charges in the plasma,me is the
electron mass,T is the plasma temperature, andL is the
so-called Coulomb logarithm@22#

L5 lnS kmax

kmin
D , ~28!

wherekmax andkmin are the maximal and minimal values o
the Coulomb collision parameter@21,22#. The non-
Hamiltonian character of the system leads to the existenc
attracting invariant sets in the phase space@23#, which will
be investigated now for atomic forces obtained from
variational principle.

A. Formation of attractors and bifurcation scenarios

In order to get significant qualitative effects we have ch
sen a rather large friction constantg50.05 a.u. In this large
damping regime the system is mainly moving on a sta
final state~attractor!, except for field strengths where th
atomic potential does not play an essential role for the e
tron dynamics. But we found that there are very long chao
transients before the system is cascading into the attracto
check whether these transients are indeed chaotic, we
calculated the largest Lyapunov exponent, which meas
the exponential divergence of initially nearby trajectorie
The positive Lyapunov exponents obtained for the transie
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correspond to chaotic dynamics. The lifetime of these tr
sients increases with a decreasing damping factorg. Such
chaotic transients were investigated by several authors@24–
26# and were also found in the dynamics of trapped ato
@27#. During this transient process there is a high energy fl
from the laser field to the electron, where the electron
thrown far out of the center. Due to the action of the atom
force and the dissipative effects it moves back to the nucle
Such a chaotic transient is shown in Fig. 8 for certain fie
parameters. Note the large amplitude of the electron mo
along the external field, which exceeds 20 a.u. for the u
parameters. Since the oscillation perpendicular to the po
ization direction of the laser field is also excited, the cor
sponding expectation value of the dipole moment has a n
vanishing value, in contrast to the Coulomb-free motio
Additionally, the chaotic character of the electron oscillati
causes higher frequencies in the spectrum of the elec
dipole radiation for all components of the dipole mome
d~t!.

Nonlinear dynamical systems often exhibit many rich a
varied behavior of which stationary, periodic, quasiperiod
and chaotic attractors are some of the typical long-term
haviors. A general approach in studying the complexity
such systems involves investigating their dynamics as so
system parameters are varied. This method of analyz
qualitative changes in the systems’ dynamics, known as
furcations, yield a deeper insight into the global dynamics
the system. Bifurcations are sudden changes in the dyna
that occur when a system’s parameter crosses a cri
threshold. Such dynamical transitions result in one or m
of the following changes.

~1! A change in the number and stability of different lon
term behaviors, such as in a turning point or saddle n
bifurcation, where a pair of a stable and an unstable stat
ary, periodic or quasiperiodic solutions, respectively, appe
or disappears and as in a pitchfork bifurcation, where o
stable solution loses stability and two new stable solutio
with different symmetry properties appear.

~2! A stability change accompanied by a change in
type of behavior such as in~i! a torus bifurcation where a
periodic solution loses stability and a stable quasiperio

FIG. 8. Projection of a stroboscopic Poincare´ section onto the
three-dimensional phase space forE050.25, v50.23, and g
50.05.
8-7
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FIG. 9. Bifurcation diagram atv50.34 a.u.
andg50.05 a.u.
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motion arises,~ii ! a frequency locking, where the two fre
quencies of a quasiperiodic motion become rationally rela
leading to a periodic motion on the torus, and~iii ! in a period
doubling, where a periodic solution with periodT becomes
unstable and a periodic solution with double periodT
arises.

All the mentioned transitions can be found in the mod
for the dynamics of the electron studied in this paper. Mo
over, we find also more complicated transitions, e.g., the
pearance and disappearance of chaotic attractors.

Let us now study the dynamics of the system under va
tion of a system’s parameter. Depending onE0 , v, andg the
system exhibits a large variety of different long-term beh
ior, e.g., periodic, quasiperiodic, and chaotic motion. In so
regions of the parameter space several attractors coexis
cannot expect that all the fine details of the properties of
dynamical system have an important relevance for the
quantum-mechanical system. But the crucial differences
the behavior of the semiclassical atom at certain bifurca
points influence physical observables calculated from
trail wave function@Eq. ~7!#. We will point out the essentia
features in the following at certain places. Let us discuss
behavior for a fixed external frequencyv and varyingE0. A
bifurcation diagram characterizing the system’s behav
with respect to the varying parameterE0 is shown in Fig. 9.
In the shown parameter interval the limit cycles can be
vided into two classes, one-dimensional oscillations alo
the polarization direction of the applied electromagnetic fi
and two-dimensional limit cycles where the second oscilla
perpendicular to the polarization direction is also excit
The one-dimensional oscillation becomes unstable at
turning point atE050.139. This solution should becom
stable again at a turning point atE050.04 in the case of only
one driven oscillator. But we find that very near to this tur
ing point, a pitchfork bifurcation occurs where the stab
two-dimensional oscillation meets the unstable o
dimensional solution. The occurrence of the two-dimensio
oscillation is due to internal resonance between both osc
04622
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tors. The existence of transverse oscillations is the most
portant feature of the system. Thus analytical predictio
about the occurrence of the coupled ocsillations would
important for applications to real physical problems. But
analytical study of both oscillators including the intern
resonance as well as the resonance with the external fie
very complicated and common methods do not describe
observed behavior. To simplify the problem we use the f
that the two-dimensional oscillation occurs at the seco
turning point and consider only the one-dimensional direc
driven oscillator. At first we expand the atomic potential
the following form:

V~r!5A1 1
2 v0

2r 22 1
4 v0

2ar 41O~r 6!. ~29!

By using this form the behavior of the oscillator near t
main resonance can be studied by using a common pertu
tion theory. We obtain two turning points~Fig. 10! given by

E0
2

k1/2~b02v!2
5

g2

4
1Fv2v0S 12

3

8
ak1/2D G2

, ~30!

where

k1/25
8

9v0a S 2~v02v!6A~v02v!22
3

4
g2D . ~31!

This result will be discussed and compared with numeri
calculations later. With a further increase in the exter
force the bifurcation behavior becomes relatively comp
cated. Figure 9 shows the corresponding bifurcation diag
using a stroboscopic Poincare´ section projected onto they
axes. As mentioned above, for small field amplitudes l
than 0.04 a.u. there is no coupling between oscillators tra
verse and in parallel with the polarization axes of the ext
nal field. The attractor is a symmetric circle in thex-y plane.
If the external force increases, a symmetry breaking bifur
tion occurs at a pitchfork bifurcation and two limit cycle
8-8
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FIG. 10. Bifurcation diagram at v
50.34 a.u. andg50.05 a.u.
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occur, which are symmetric to each other. For 0.04 a
<E0<0.139 a.u. both solutions coexist in phase space
E050.214 a.u. the symmetry is broken again due to the g
eration of higher harmonics, so that from each attractor
new ones appear. A further increase in the external fo
leads to a torus bifurcation atE0.0.311 a.u. Here the dy
namics is characterized by oscillations with incommensu
frequencies and thus the trajctory lies on a torus. In cer
parameter intervals a frequency locking on the torus can
resolved numerically ~Fig. 11!. For 0.34 a.u.<E0
<0.353 a.u. the motion of the electron becomes chao
Outside this interval the system settles on one of the four
arising from the four asymmetric limit cycles. As can be se
in Fig. 11 it may happen that the system jumps to anot
torus due to the distortion in the chaotic regime. AtE0
.0.368 a.u. a reverse torus bifurcation takes place and
four limit cycles become stable with increasing force. F
higher field strength the motion is dominated by the exter
force. Thus, a single harmonic oscillation along the exter

FIG. 11. Same as Fig. 7, but in a different representation.
stability is also shown in the form of Lyapunov exponents.
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field results forE0.0.44 a.u. As mentioned above the spe
trum of the dipole radiation calculated from the trail wa
function @Eq. ~7!# crucially depends on the different kinds o
attractors. For the one-dimensional single harmonic osc
tions (E0,0.04 a.u. andE0.0.44 a.u.) only one peak a
the external frequency can be found in the spectrum ofdx(t)

and d̃y(v)50. After the first pitchfork bifurcation
(0.04 a.u.,E0,0.214 a.u.) single harmonic radiatio
along the y axes is obtained. For field strength o
0.214 a.u.,E0,0.311 a.u. peaks at higher frequenciesnv
(neN) are observed. In the quasiperiodic regim
(0.311 a.u.,E0,0.368 a.u.) many peaks at higher an
lower frequencies appear in the spectrum. For the cas
frequency locking one finds peaks at lower frequenciesv/n
whereas in the chaotic regime a broad frequency ban
observed.

The discussed bifurcation scenario is a typical one
intermediate external frequencies between 0.25 a.u. and
a.u. However, these frequencies are not very realistic for
tual experimental conditions. Typical lasers can reach
quencies of about 0.2 a.u. In this frequency regime the e
tron dynamics shows much differences compared to the c
of higher frequencies. The field strength necessary to free
electron decreases with a decreasing frequency, which
agreement with the stabilization effects in the Hamiltoni
case discussed in the first part. Thus, finite attractors e
only for relatively low field strength where only the un
coupled single harmonic solution can be found. From a T
lor expansion of the atomic potential one can see that li
cycles with a periodT5n2p/v and arbitraryn should be
possible. One can check the existence of such additio
limit cycles by integrating the system with a large number
different initial conditions. Each of the attractors has its ow
basin of attraction. These basins are the sets of initial co
tions, which all converge to this particular attractor. But t
size of the basins of attraction of these limit cycles depe
strongly on the parameters. Thus, in the higher freque
e

8-9
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regime the limit cycles with higher periods cannot be o
served numerically due to their small basins of attracti
Similar results have been found for mechanical oscillat
@28#. For frequencies around 0.2 a.u. subharmonic re
nances can be obtained. In Fig. 12 we show such a bas
attraction forv50.23 andE050.1. The boundaries of th
basins of attraction have a fractal structure with a box cou
ing dimensiondF51.73360.003, which has been compute
using the uncertainty exponent@29#. Thus a small perturba
tion leads to a transition between the limit cycles. This h
some consequences for the quasistatic tunneling model
posed in@19#. Here it is assumed that during the laser pu
at each time step a wave packet with positive energy
formed. In this work quantities, such as, the electron ene
spectrum or the spectrum of the emitted light are calcula
from the Coulomb-free wave packet dynamics and averag
the result over time by using the quasistatic tunneling ioni
tion probability at each time step. But in the presented c
due to the action of the Coulomb potential and the surrou
ings ~dissipation!, the time evolution of the wave packe
strongly depends on the initial wave packet parameters
the initial phase of the laser field. From Fig. 12 one can
that in most of the cases the electron will oscillate with t
external frequency. But nevertheless there are finite contr
tions to the wave packet motion with higher period lengt
If we follow the limit cycles with a higher period thanv/2p
the transition into the chaotic dynamics occurs via per
doubling. The chaotic attractor disappears again in a bou
ary crisis, e.g., the attractor collides with the boundary of
own basin of attraction. Figure 13 shows such a typical
furcation diagram for a frequency of 0.22 a.u.

The complicated bifurcation behavior makes a detai
analysis of all bifurcation scenarios in the whole parame
space practically impossible. Thus we have to choose in
esting pieces to characterize the dynamics of the system
the following we only discuss the case of limit cycles with
period lengthT52p/v. A rough bifurcation diagram forg
50.05 is shown in Fig. 14. The solid lines correspond
bifurcations of the one-dimensional oscillations and dot

FIG. 12. Basin of attraction in thex(t50)2px(t50) plane.
y(t50)2py(t50) are set to zero. Limit cycles with period
~black dots!, 2 ~gray dots!, 3 and 4~white area! are shown. The field
parameters areE050.1 a.u. andv50.4 a.u..
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lines to those of the coupled motions. The different types
bifurcations are denoted by different letters. The analyti
predictions for the two branches of turning points obtain
from Eq.~30! are also shown~thin solid line!. The agreement
with the numerical calculations is very good. With Eq.~30!
we can compare the shape of the two bifurcation lines for
three different potentials~Fig. 15!. The behavior for the
‘‘fixed width’’ approximation and for the SAA potential is, in
principle, the same whereas the branches for the ‘‘soft-co
potential are much more different. This is due to the diff
ences in the linear coefficient obtained from an expansion
the potential@see Fig. 1~b!#. The such as structures like th
Arnol’d tongues, which have to be situated at linec, cannot
be resolved by our numerical techniques. However, the
quency locking shown in Fig. 8 indicates the existence
these tongues. Several routes into a chaotic regime are
shown in Fig. 14. For field strengths betweenE050.19 and
E050.39 a transition occurs via a torus bifurcation in t
case of coupled oscillations. At higher fields the tw
dimensional oscillations undergo a period doubling casc

FIG. 13. Bifurcation diagram atv50.22 a.u. and g
50.05 a.u.

FIG. 14. Two-dimensional bifurcation diagram atg50.05 a.u.
Branches of turning points~a!, simple bifurcation points~b!, torus
bifurcation points~c!, and period doubling points~d! are shown.
Only the tongues at the torus bifurcation line are sketched.
8-10
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BIFURCATIONS OF A SEMICLASSICAL ATOM IN A . . . PHYSICAL REVIEW E65 046228
at line d2. The uncoupled limit cycles become chaotic via
period doubling cascade, denoted as lined1 in the bifurcation
diagram. At lower frequencies the torus bifurcation li
meets the pitchfork bifurcation line outside the frame of F
14 and a bifurcation of codimension 2 appears in the tw
dimensional parameter space. Beyond this point the tra
tion to chaos occurs via period doubling bifurcations. A
other important point in Fig. 14 is the so-called cusp poin
E050.02 and v50.523 where two branches of turnin
points meet. The cusp point can be calculated from Eq.~30!.
From the conditionk15k2 follows

vcusp5v02
A3

2
g,

E0
cusp5A2A3

27

g3

v0a
~A3g24v0!2. ~32!

From this relation a critical damping constant follows

gc5
2

A3
v0 , ~33!

which corresponds to a critical plasma densityne
c @see Eq.

~27!#. For friction constants~or densities! larger than this
critical value, the two turning point bifurcations vanish a
the transverse oscillator is completely damped out.

The amplitudes of oscillations perpendicular to the pol
ization axes of the external field can exceed 2 a.u. This fa
of importance for the semiclassical description of higher h
monic generation and double ionization of multielectron
oms @19,30#. Here the electron dynamics after ionization
described by the Coulomb-free motion of a classical part
@30# or a wave packet@19#. At the time of encounter with its
parent nucleus inelastic scattering is possible, which is c
nected with recombination leading to the emission of h
frenquency light. In the case of multielectron atoms rema
ing electrons can also be ionized during the scattering p

FIG. 15. Branches of two turning points atg50.05 a.u. for the
‘‘fixed width’’ approximation ~solid lines!, SAA potential~dashed
lines!, and ‘‘soft-core’’ potential~dotted lines!.
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cess. But, as we have shown, the influences of the non
earities of the atomic potential will cause oscillatio
transverse to the field direction, which reduce the scatte
probability by many orders of magnitudes. For damping co
stants larger thangc and frequencies larger thangcusp this
effect plays no role. A comparison of the critical frictio
constants and frequencies for a characteristic friction is gi
in Table I. The ‘‘soft-core’’ potential leads again to muc
different results.

B. Influence of noise

Certainly the simple semiclassical atom model stud
here fails to describe a real atom embedded in a surround
which is an open quantum system. However, at presen
seems to be hopeless to solve the full density operator e
tions for real atoms in strong fields and in a heat bath. The
fore, drastic approximations are necessary. Many effe
such as, the generation of higher harmonics@3# or strong
field photoionization@31# can be described by a semiclass
cal approach, where an initial wave packet is propagated
the classical actionS(q,p) @32#. The fine structure of the
classical dynamics gets lost in this semiclassical techniq
We expect that those properties which survive under a
chastic perturbation may play a role in the semiclass
propagation of the electron state. In the following, we try
model the influence of the surrounding heat bath on the a
by inclusion of a stochastic force into the quasiclassical
namical equations. We describe this force by a white no
term

^j i~ t !&50;^j i~ t !j j~ t8!&52Dd~ t2t8!d i j , ~34!

which has to be added to Eq.~26!. Then, the equations o
motion are of Langevin type,

ṗi52
]H

]r i
2gpi1j i~ t !. ~35!

The strength of the stochastic force may be connected w
the damping constant and a formal temperatureT of the heat
bath with the help of the fluctuation-dissipation theorem

D5gkBT. ~36!

This stochastic force can also be seen as a simple mode
the electric microfields in plasmas. In the case of de
plasma, which corresponds to high damping factors, th
stochastic fields give the main contribution to ionization
fects @33#. To study the influence of the noise we calculat
again the bifurcation diagram shown in Fig. 9 by using E
~9! and ~11!. The result is shown in Fig. 16. The fine stru

TABLE I. Critical damping constantgc for the three different
potenials andvcusp for g50.05.

gc vcusp

SAA 0.564 0.523
Fixed width 0.564 0.523
Soft core 0.425 0.325
8-11
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THOMAS POHL, ULRIKE FEUDEL, AND WERNER EBELING PHYSICAL REVIEW E65 046228
ture, such as the frequency locking on the torus, is co
pletely destroyed. But we also see the conservation of s
metry breaking bifurcations due to resonances of the exte
field with both the transverse and the parallel oscillat
Thus, the combined action of the Coulomb potential and

FIG. 16. Bifurcation diagram atv50.34 a.u.,g50.05 a.u.,
andD50.005 a.u.
d

et
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surrounding fields~dissipation and fluctuation! leads to a
dramatic reduction of the rescattering probability, which c
cially influences the emission of light and the ionization pr
cess, as described in the last section.

IV. CONCLUSIONS

We have investigated the dynamics of a one-electron s
tem in a nonlinear atomic potential under the action of
external periodical driving force. We considered a quasicl
sical model of the electron dynamics based on the appro
of wave packet dynamics in combination with a ‘‘local Ri
principle.’’ The results have been compared to the m
familar ‘‘soft-core’’ potential. The advantage of the ‘‘soft
core’’ potential is the possibility to tune every ground-sta
energy wanted. But whereas the ‘‘soft-core’’ potential is i
troducedad hoc, the present potential can be derived from
variational principle using an adiabatic approximation.
comparison of both potentials showed that differences in
linear as well as in the nonlinear terms lead to a very diff
ent electron dynamics. This result demonstrates how imp
tant the inclusion of finer details into models of atom dyna
ics is. The present model of electron dynamics, which
based on variational principles, shows a rich scenario of
furcations in dependence on the strength and the freque
of the external field.
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