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Bifurcations of a semiclassical atom in a periodic field
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The dynamics of an electron moving in the Coulomb field of a nucleus and a strong periodic field is studied
in a semiclassical model. Hamiltonian equations of motion are derived using Gaussian wave functions, a
variational principle, and an adiabatic approximation for the width of the wave packets. Predictions for the
ionization probability are found to agree rather well with exact calculations in the barrier supression regime. By
introducing dissipation and fluctuation the model atom is considered as an open system. For the dissipative
system we investigate the bifurcations in dependence on strength and frequency of the external field. A quite
complex bifurcation scenario is obtained. The sensitivity with respect to noise is also studied.
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[. INTRODUCTION For all further calculations we use atomic unis=s(m,=7%
=1). The laser field is treated in the dipole approximation,
Many experimental and theoretical studies of periodicallywhere only linearly polarized light is considered

driven atoms have been made to understand a variety of fea- .
tures, e.g., higher harmonic generation or stabilization phe- V(r,t)=Ey-r sinwt. 3)
nomenad 1,2]. The classical electron dynamics plays an im-
portant role in the investigation of highly excited atomic Here the vectoE, defines the direction and the amplitude of
electrons in a periodical fielf3]. The underlying potential the external field. One possible semiclassical description of
especially for one-dimensional calculations has to have sewthis problem is based on an approximation for the particle
eral properties—the absence of the singularity at the originvave function containing time-dependent parametgfy,
and the asymptotic Coulomb-like behavior. A widely usedwhich represent the coordinates in a generalized phase space.
form that satisfies these conditions is the so-called “soft-cord his technique has been widely applied in quantum molecu-
potential” lar dynamics to study problems in plasma phy$is9] and
nuclear physic$10,11. The dynamics of the parameters is
described by the time-dependent variational princji2]

V(r)= 1)

1
Nk b od .
rre 5| “(uli - Ao @

Heree is the ground-state energy of the atom. Many other, i , . .
choices satisfying the above conditions are possible. The equations of motion can be written in the general form
From a time-dependent variational principle we derive an 12
adiabatic Hamiltonian describing the motion of a semiclassi- JH
cal electron. This Hamiltonian differs slightly from E€L). q,=> AL , (5)
Note that Eq(1) is anad hocintroduced potential, whereas koS #ag,
the semiclassical adiabatic approximati®AA) presented o o )
in this paper follows from physical principles. In the follow- Where the Hamiltonian functioH is defined as the expecta-
ing we investigate the semiclassical electron dynamics fotion value of the Hamiltoniar
different kinds of atomic potentials. We will analyze in detail A
the bifurcations in dependence on the electric field strength H={(y|H|¢). (6)
and the frequency of the external laser field. It will be shown
that slight differences in the shape of the potential lead te\s a trial wave function we choose a Gaussian wave packet
drastic changes in the dynamics of the system.

(q—r)?

3 3/4 3
Y(a;r,p,B,pp) = (m) exr{ - @Hpﬁ

II. HAMILTONIAN DYNAMICS

A. Semiclassical approximation —ip-(q—r)

. (7

The Hamiltonian operator describing a one-electron atom
in a periodical field is given by Here 8 andp, parametrize the complex width of the distri-
bution, whiler andp are the average position and average
momentum, respectively. With this choice of the wave func-
tion the matrixA;,} is of canonical form

N| DT>

H= +V(r,p,t). 2)
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A*l 0 -1 8 3 r2

v 1 0/’ ( ) I'OZE\/FEX % . (12)
which leads to a Hamiltonian-like dynamics for the param-This adiabatic approximation solves the problem of the
eters with the following semiclassical Hamiltonian: wrong ionization energy as well as the problems of the ad-
- 3 9 ditional degree of freedom. To get an explicit expression for

_b Z /| S 201 2 . the width of the wave packet we expand E#j2) in r, and

H= 5T erf(r 25 +2pgB+ 83+Eo~rsmwt. obtain
©)
ro=2\m+iJom+642, (13

If the electric field is chosen to be directed along thexes ) ) )
[r=(r;,r,,r3)] and cylindric coordinates are introducexd (For testing the result we perform the linit-0, which cor-
=rs, y= Fz—zr1+r2 tang=r,/ry), we obtain from the responds to a free electron in a linearly polarized laser field.

Hamiltonian[Eq. (9)] the following equations of motion: By substituting the solution of Eq10) in Eq. (7) we obtain
the Volkov wave function in the long wavelength approxima-

X=p tion
X1
2 EZ E
X[ [3) /irex a2 ¢=eXp(ip~r—i%t—i4—°2t+i 0|szinwt
SRS 28]~ N=p 28 o
+Egsin(wt), —i—o3 sin 2wt), (14)
8w
y=Py which is the exact quantum-mechanical solution for the
) problem. As mentioned above the SAA predicts an ionization
b ——Zl erf(r /i) _ /i rexd — 3L energy that is smaller than the exact energy provided by
Y r3 2B e 28/ exact quantum theory. With respect to this property the SAA
seems to be worse than the soft-core potential to describe
B:4p5,3 atom light interactions. However, the atomic potential should

also give good predictions for the polarizability of the atom,

defined by
. 9 o2 7 [ 2 p( 3r2) 10
== — exp — 5=|.
Ps 832 P 2mB° 23 p

a=g, (15

Using this form of dynamical equations the width of the h is the diool lting f h ic el
wave packet provides an additional degree of freedom. Thig/herep is the dipole moment resulting from the static elec-
tric field E. Quantum-mechanical perturbation theory pre-

fact leads to a divergent partition sum and to wrong predic-,,
tions for the thermal capacity fulfilling neither the classicald'c_tS for the hyd_rogen gro_und state a Va!'“ewf4-5 au.
nor the quantum limit. Thus, modifications of EQ.0) are ~ USINg @ harmonic expansion of the semlzcla_;,smal potentials
necessary to solve these problems. The simplest possibility {§€ Polarizability can be estimated ly=e“/wp. The soft-

to fix the width at the value that gives the minimum ground-C0re potential fitted to the exact ground-state energy yields

state energy. Introducing a new parameltéit 283, this a=8 a.u., which is about two times higher than the exact
condition is fulfilled for value. Our SAA potential based on a Gaussian wave packet

leads toe=3.1 a.u., which is only 30% of the exact value.

3
rOZE\/; (11 B. Free oscillations

The equations of motiofEq. (10)] can be rescaled to the
with a groundstate energy ef,= —0.4242, which is about atomic hydrogen case by the substitutions
15% higher than the exact value provided by quantum me-

chanics. From the fixed width arises the problem, that the X=2Zx, y=Zy, B=2Z%B,

ionization energy obtained from E¢P) does not agree with

quantum-mechanical predictions. The third summand in Eq. Px=2Zp/Z, Py=2Zp,/Z, Pa=pslZ?

(9), the so-called curvature energy, leads to an ionization

energy ofsg=0.84&°. Eo=Eo/Z3, w=w/Z? T=2%. (16)

In order to avoid these difficulties we introduce a SAA,
which is based on the assumption of a slowly varying widthFor that reason we will consider the case of a hydrogen atom
of the wave packet. From the conditigny=0 we find for ~ Z=1 for all further calculations. Figure(d shows the shape
givenr andp the following expression for: of the SAA potential compared to the “soft-core” potential.
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FIG. 1. Comparison of certain properties of different atomic potentials. The spatial $llapgee leading coefficents in a Taylor
expansion(b) and the frequency of free linear oscillations as a function of the corresponding amplitude are shown for different types of
potentials. In(b) the results for the three potentials derived from Ek.(diamonds, Egs.(9),(11) (open circleg and Eqgs.(9),(13) (full
circles are shown.

The principle shape of both potentials looks very similar. ButwhereA is the amplitude of the single harmonic term in the
a more detailed analysis of the short distance behavior, givego|ution anda, are coefficients in a Taylor series of the

by the leading coefficients, in a Taylor expansioiFig.  atomic force. A comparison of the eigenfrequencies for the
1(b)], as well as the asymptotic behavior shows significantnree potentials is given in Fig(d).

differences, which may lead to very different dynamical be-

havior at high and low energies. Furthermore, the relatively _ ]

good agreement of the coefficientg for the potentials de- C. The action of the external field

rived from Eqgs.(11) and(13) gives rise to the expectation of  The action of strong external fields gives rise to essential
similar dynamics at small distances. The asymptotic behavioghanges of the atomic dynamics. The approximation pro-

of the “soft-core” potential is given by posed here reduces the problem to the classical dynamics in
A . an oscillating two-dimensional potential well. As shown
1 8yl 3251 above, in the limit of very large fields or fat— 0 the model
Vin)y=——+—————+---, a7

is exact, since the Volkov wave function is reproduced. For
smaller fields however, the electron feels the details of the
whereas the potentials derived from the variational principledtomic model potential. Due to the different degree of non-
converge to-Z/r exponentially. As we will show processes, linearitiy of the “soft-core” and the other two potentials a
such as ionization or stabilization phenomena, are dominatelriodic perturbation applied to these atomic forces will lead
by the asymptotic behavior, whereas the higher harmoniéC different results. To prove this we use a stroboscopic Poin-
spectrum is caused by the shape of the potential at shoffreplot of the perturbed trajectories. The initial conditions
distanceg3]. Using the Lindstedt-Poincareethod the main &€ choosen in a way as to obtain oscillations along the po-
frequency of the one-dimensional free oscillations can bdarization direction of the electric fieldyt=p,=0). For the
expanded af13] potentials described by Eg®) and(11) and by Eqgs(9) and
(13) we found two different resonant orbits, where one orbit
_ 9&153—1033 corresponds to the inner black dots in Figa)2 The other
w= \/a—l 1+ —————A%+. , (18)  orbit lies outside of Fig. @) similar to that one in Fig. @).

r 9 r3 27 r5

=2 SN i
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FIG. 3. Separatrix corresponding to closed orbits and open tra- FIG. 4. lonization rate as a function of external frequency for
jectories derived for the “soft-core” potentidthin lines and for  the “soft-core” (a) and the SAA potentialb) for a field strength of
the SAA potential(thick lines. Ey=0.2 a.u. The inverse timesR/(solid line) and 1T (dotted

line) are also shown.
orbits is also shown. For the “soft-core” potential neither
ultraharmonic nor subharmonic resonance has been Observ_gﬁi-:ctron is bound for half of a cycle of the external field

in this parameter regime. The corresponding single harmonl&mger than forw< w, . At this frequency the electron energy

orbits are shown in Fig. (). Due to 1f behavior of the becomes positive exactly after one half cydle27/w of

potentials, the phase space is divided into two regions COM&he external field. For frequencies larger thanthe electron
sponding to closed orbits and open trajectories diverging to :

infinity. If an external field is applied, a transition between a:‘zrsélr?(\;\(laege?v?/\ggnbt)r/];heeleftl:?:gnaﬁgti/gnd:r? dt?h(tahgx?:rarl\z(? :Ig_ctric
closed orbit and the open trajectories may occur. During. Id. This leads to th id d f the ionizati i
some cycles of the external field an amount of energy %e - IS leads 1o the rapid decrease of the lonization rate
transferred to the electron until it escapes over the barrie eyondw, . For a further increasing frequency the ionization

formed by the atomic field and the laser field. As mentione ate increases until the electron motion is again in phase with

above the potential derived from E@) is not very useful to he external field. The inverse timesT2aAnd 1T are also

describe ionization processes. That is why we consider onlihown In F'g.' .4 to un_derllne the abov_e statements. This dy-
amical stabilization is purely a classical effect. In a recent

the “soft-core” and the “adiabatic appoximation” potential. K thod similar to the F theint 't |
Such a separatrix, which divides the space of initial congjVOrk a method simriar to the Feynman path-integral formal-

tions into two parts of bound and free motions, for an instansSM has been developed to describe the electron energy spec-

taneously switched on field &t 0 is shown in Fig. 3 for two trum in the final stat¢14]. These calculations are based on

different external field strengths, wheye-p,=0. Here the classical electron trajectories weighted with a complex num-

electron is considered as ionized if its energy without theber whose phase is equal to the classical action along the

contribution of the external field changes to positive vaIuestraJeCtory' The observed energy spectrum of the ejected elec-

We see again that different atomic potentials can lead térons is very well described by this theory. This shows that

much different results. The asymmetry of the separatrix fo ;][grﬁl-isshlfi?:tzlreaittrig: mrﬂtgnﬁee;‘:’eggﬂggtr fhe;tglgsiiitztg
finite fields arises from the initial phasg¢ of the external 9 ' ' P

field, which is set tap=0 for the calculations in Fig. 3. If bilization effect plays a role in quantum-mechanical ioniza-

) ; o ti?n processes. As can be seen from Fig. 4 both atomic po-
one considers the pha_se of the field as an a(_jd|_t|ona_l degree fntials lead, in principle, to the same ionization behavior.
fr.eedO'T‘ the separatrix becomes symmetric in this hlgher'But again there are quantitative differences between both
d|menS|on.aI space. Co . atomic models. In some frequency interval the ionization rate
For an investigation of the ionization process in more de- lculated f the SAA model is less than the rate obtained
tail we measured the time needed for a transition from & o oo TomM e mode 1S 1ess than e rate obtaine

Wwith the “soft-core” potential although the binding energy of

bounded to an unbounded state. This time is estimated by tr}ﬁe “soft-core” potential is larger than for the SAA potential.

time 7 at whigh the energy of the elect_ron change.s to pOSitiV(.aI'his means that the study of ionization of atoms by strong
values. The inverse of this characteristic time gives an esti-

mation of the ionization rate in this semiclassical picture.Iaser fields as done ifP] with the "soft-core” potential as

. ell as the investigation of the higher harmonic spectf@in
The re_sult|_ng depen(_jenc_e on the ext_ernal _frequency for bo}ﬁepend on the ch?)ice of the undgerlying atomic rrF:odeI.
potentials is shown in Fig. 4. The simulations were starte

from the atomic ground state that correspondsp(®)
=r(0)=0. One can see that for both potentials a stabiliza-
tion takes place at higher frequencies of the external field due In order to check the validity of the proposed model we
to a dynamical trapping of the electron. For a critical fre-will compare the predicted ionization behavior of the semi-
guencyw., the ionization rate decreases rapidly. Here theclassical model atom with numerical solutions of the time-

D. Comparison with quantum calculations
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dependent Schdinger equation. Additionally, the results 1.0
will be compared with quantum results for the Coulomb-free
case[15] to demonstrate the importance of the Coulomb in-
teraction. The definition of the ionization rate used above hasg
been successfully applied to the problem of electron impactz
ionization in plasmag8]. Since quantum effects become % o4
more important for the case of photon electron interaction,%
no quantitative agreement with quantum-mechanical calcula-g
tions can be expected. However, the dynamical trapping dewz
scribed above should also occur in more realistic calcula-3
tions, and might be the reason for discrepancies between th®
numerically calculated ionization rates and the quasistatic
theory in the barrier supression regifiig]. The importance | !
of this classical effect might be proven by numerical inves- . L L .
tigations of the time-dependent ScHinger equation. 0 1 2 3
The main reason for possible discrepancies with exact in- t/ opt. cycles
vestigations is f[he fact that the used wave packets can .only FIG. 5. Comparison between the time dependence of the
hgvg one maximum. Thus, tpnnehng cannot be descrlbeground-state population obtained from HGO) and the quantum
WIthII:] this model. But for suff|C|entIy.Iarge fields, the elec- rasuit found in[18], for E;=0.5, N=6, @=0.2 (a), E=0.3, N
tron is able to escape over the barrier formed by the Cou=g =02 (b), E;=0.5, N=12, ©=0.2 (c) and E;=0.3, N
pression ionization(BSI) is much faster than tunneling, the external field.
which is dominant for weaker fields. In this regime, classical
and semiclassical pictures have been found to work welP(t)<0.5 the ground-state population given by E20) de-
[15,17. The probability to find the electron in its atomic creases to fast with increasing time. This is mainly due to the

0.6

ground state at the timeis given by fact that the ground-state properties of the atom at large dis-
tances from the core are not very well described by the
P(t)=[((x,0)[g(x,1)), (19  Gaussian approximation.

_ _ _ Let us now study the properties of the light emitted by the
where #(x,0) is the ground-state wave function. Using Eq. oscillating electron. If15] it has been shown that in the BSI

(7) for the time-dependent wave function, we get regime even the first laser cycle gives the main contribution
36 3 3 to the dipole acceleration, which is known to directly deter-
P(1)= ,[3)0,3) xp{ﬁ[(QBvaBC)rz mine the coherent part of the emitted light spectral energy
E,|d,|?, (22
+45,8B DZ—CF'D]]- (200 where w is the frequency of the emitted lighE,, is the

energy per frequency, and

Here Bo=27m/32Z2 follows from Eq.(11) andB=By+ 3, ) —_—
C=16pBoB° andD =9B?+ p,B,C. From this equation we d,= f d(t)e'“dt (23
calculate the ground-state population as a function of time by 0

evaluating the parameters according to Ef) with r(0) g the Fourier transform of the dipole acceleration. Since we

=p(0) =ps(0)=0andB(0)= B, to obtain the best possible 1,56 shown that in the BSI regime the wave packet model
ground-state properties. [18] the three-dimensional time- y,e5 gescribe the ionization process for this time interval, we
dependent Schdinger equation has been solved numeri-g, ot that the emission of light can also be described within
cally, for the problem of an one-electron atom in a Imearlythe proposed model. According to the wave packet model the

polarized laser field. In this work the authors found a S'mpleexpectation value of the operator of the dipole acceleration

semiempirical formula foP(t) by a fit to their numerical atta(t)=Zx/x3—E(t) is given by

solution. To compare our result with this formula, we apply

the pulse shape used [ih8] (1) = — E(t) = VVar(1), (24)
t—tg)? where the effective potential is given b
E(t)=Egsinwt exp( - ( 20) ) (21 P g Y
o Z r
Verr)=—+ erf( ;) : (25)

wheret,=N=/w and 02=télln 20. In Fig. 5 we compare
our results with the formula of Bauer and Mulddi8] for  and the parametersand p=+23/3 are determined by Eq.
different laser pulses. For a ground-state population largef10) with r(0)=0 andp(0) is given by Eq(11). In [15] the
than 50%, the degree of agreement is similar to that with thelipole acceleration for the BSI regime has been calculated by
exact solution of the Schdinger equationsee[18]). For  an expansion in terms of the interatomic Coulomb potential
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FIG. 7. Ground-state population as a function of time obtained
from the presented wave packet modsblid line), from the first
order perturbation approach ¢20] (dashed ling and from the
guantum formula obtained i8] (dotted ling. The field param-
eters are the same as in Fig. 6. The time is shown in units of the
period length of the external field.

2500

2000

1500 frequency ofw.=4.5w. This frequency corresponds to an

energy of 2.25 a.u., which is equal to 263+ 0.5, where
Up=Er2m,,UJ4w2 is the maximum ponderomotive energy. No-
tice that this result differs by 17.8% from the B.2+ Eg law
for the higher harmonic cutoff in the tunneling ionization
regime, which has been verified in various experiments and
by theoretical studiegl9]. As well known the generation of
these higher harmonics is due to recombination of the re-
sidual ion and the electron that moves under the influence of
o /opt. frequ. the external field in the vincinity of the nucleus. This can be
_ _ _seen from the peaks occurring in the time evolution of the
FIG. 6. Comparison of the spectral energy of the emitted "ghtground-state populatiofsee Fig. 7. As can be also seen in
obtained from a first order perturbation theory.proposeﬂlﬁj ) Fig. 7, the ground-state population calculated from the
?n% from the wave paékft mide' presented in th}s "‘@dehe Coulomb-free wave packet dynamics according to the first
leld parameters are£,=0.845, ©=05, o=6m/w and to  ,yar herturbation approachlibs, 20 disagrees with the for-
=9.66m/ . The frequency is shown in units of the frequency of the ; o :
external field. mula |n[_18] and the recombination pegks complete'ly Q|sap—
pear, which explains the absence of higher harmonics in Fig.
o o 6. In [20] excellent agreement between the Coulomb-free
and by approximating the initial ground state by awave packet dynamics and numerical solutions of the time-
Gaussian. In this work the authors arrive at E@®) and  gependent Schetinger equation has been found, for the case
(25 where the parameters are determined by the field-fregf 5 one-dimensional smoothed short range potential. But as
motion of the wave packet(t)=/(E(t')dt’ and p(t)  we have shown, this approach fails to predict the ionization
=p(0)?+1t%/p(0)2. By demanding a maximal overlap be- behavior of a three-dimensional Coulomb atom, which un-
tween the initial Gaussian and the exact ground-state waveerlines again the importance of the properties of the used
function they obtainegh(0)=1.35/Z, which slightly differs  model potential.
from Eq.(11) p(0)=1.33Z. In Fig. 6 we compare the spec- A detailed study of these effects including interference
tral energy of the emitted light obtained from E@424) and  effects and extending the model to the tunneling regime is
(25) with the calculations if15]. The results are much dif- subject to future work. However, the above investigations
ferent. In Fig. €a) the strength of higher harmonics de- show that the wave packet model known from plasma phys-
creases rapidly due to the monotone increase of the waves is applicable in strong field atomic physics beyond the
packet spreading. In contrast to this first order perturbatioBSI regime. Having established the applicability of the semi-
result, the spectral energy in Fig(hp clearly shows a gen- classical wave packet model to atom-light interaction we
eration of higher order harmonics. Since the ionization rate imiow study the electron dynamics from a more general point
large for the used laser parameters, the efficiency of highesf view. Not all the following semiclassical results are essen-
harmonic generation is low. Thus, the sharp plateau structurgal for real quantum-mechanical situations, but nevertheless
of the energy spectrum cannot be observed in the BSI rethey give interesting insight into the complex dynamical
gime. In Fig. §b) we can identify a weak plateau until a properties of the atomic system.

spectral energy

1000

500

046228-6



BIFURCATIONS OF A SEMICLASSICAL ATOM INA .. .. PHYSICAL REVIEW EG5 046228

lIl. DISSIPATIVE DYNAMICS

Up to this point the atom is considered as an isolated
system only interacting with the laser field. Now we embed
the model atom in a system consisting of many subsystems
of the same type as our single atom to model a dense plasma.
Each electron may carry out a free motion or is bound to its
nucleus. Due to the interaction with this enviroment the elec-
tron is subject to dissipation. A full description of the dissi-
pative processes requires the formulation of a quantum ki-
netic theory for atoms embedded into a plasma as given, e.g.,
by Klimontovich [21]. Such a complicated approach is be-
yond the scope of this paper. Here we prefer, therefore, a
semiphenomenological approach, which is based on approxi-
mative solutions of the kinetic equations assuming weak de-
viations of the plasma from equilibrium. This so-called o ) o _
Spitzer approach is described, for example[2t,22). As a FIG._ 8. Pr_OJectlon of a stroboscopic Poincaection onto the
result the complicated interaction between the moving electree-dimensional phase space fBp=0.25, »=0.23, andy
tron and the plasma is described by a linear friction term,:0'05'

which is introduced into the Hamiltonian dynami¢Ed.  correspond to chaotic dynamics. The lifetime of these tran-
(10)], sients increases with a decreasing damping fagtoBuch
chaotic transients were investigated by several autffsts

S ﬁ_ , (26) 26] and were also found in the dynamics of trapped atoms

P ar; Pi- [27]. During this transient process there is a high energy flow

from the laser field to the electron, where the electron is

The friction constanty is somehow related to the frequency thrown far out of the center. Due to the action of the atomic

of the collisions with the surrounding electrons. In the frame-force and the dissipative effects it moves back to the nucleus.

work of the kinetic theory the average collision frequencySuch a chaotic transient is shown in Fig. 8 for certain field

may be estimated by the formula parameters. Note the large amplitude of the electron motion
along the external field, which exceeds 20 a.u. for the used

4\2mne'L parameters. Since the oscillation perpendicular to the polar-

Y o a2 (27) ization direction of the laser field is also excited, the corre-

- 32"
3me(KT) sponding expectation value of the dipole moment has a non-

Here n is the density of charges in the plasmm, is the vanishing value, in contrast to the Coulomb-free motion.
electron massT is the plasma temperature, ahdis the Additionally, the chaotic character of the electron oscillation

so-called Coulomb logarithif22] causes higher frequencies in the spectrum of the electron
dipole radiation for all components of the dipole moment
d(t).
L= In( km_ax>, (28 Nonlinear dynamical systems often exhibit many rich and
min

varied behavior of which stationary, periodic, quasiperiodic,
wherek ., andK, are the maximal and minimal values of and_ chaotic attractors are some of th(_a typical Iong—term be-
the Coulomb collision parametef21,23. The non- haviors. A gen.eral approach in §tudymg the complexﬂy of
Hamiltonian character of the system leads to the existence &uch systems involves investigating their dynamics as some

attracting invariant sets in the phase spE2@, which will syst_em_ parameters are varied. This method of analyzin_g
be investigated now for atomic forces obtained from thedualitative changes in the systems’ dynamics, known as bi-
variational principle. furcations, yield a deeper insight into the global dynamics of

the system. Bifurcations are sudden changes in the dynamics
that occur when a system’s parameter crosses a critical
threshold. Such dynamical transitions result in one or more
In order to get significant qualitative effects we have cho-of the following changes.
sen a rather large friction constapt0.05 a.u. In this large (1) A change in the number and stability of different long-
damping regime the system is mainly moving on a stabléerm behaviors, such as in a turning point or saddle node
final state (attractoy, except for field strengths where the bifurcation, where a pair of a stable and an unstable station-
atomic potential does not play an essential role for the elecary, periodic or quasiperiodic solutions, respectively, appears
tron dynamics. But we found that there are very long chaotior disappears and as in a pitchfork bifurcation, where one
transients before the system is cascading into the attractor. &able solution loses stability and two new stable solutions
check whether these transients are indeed chaotic, we hawgth different symmetry properties appear.
calculated the largest Lyapunov exponent, which measures (2) A stability change accompanied by a change in the
the exponential divergence of initially nearby trajectories.type of behavior such as i) a torus bifurcation where a
The positive Lyapunov exponents obtained for the transientperiodic solution loses stability and a stable quasiperiodic

A. Formation of attractors and bifurcation scenarios
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FIG. 9. Bifurcation diagram a»=0.34 a.u.
andy=0.05 a.u.

motion arises(ii) a frequency locking, where the two fre- tors. The existence of transverse oscillations is the most im-
guencies of a quasiperiodic motion become rationally relategortant feature of the system. Thus analytical predictions
leading to a periodic motion on the torus, aiid) in a period  about the occurrence of the coupled ocsillations would be
doubling, where a periodic solution with periddbecomes important for applications to real physical problems. But an
unstable and a periodic solution with double period 2 analytical study of both oscillators including the internal
arises. resonance as well as the resonance with the external field is
All the mentioned transitions can be found in the modelvery complicated and common methods do not describe the
for the dynamics of the electron studied in this paper. More-observed behavior. To simplify the problem we use the fact
over, we find also more complicated transitions, e.g., the apthat the two-dimensional oscillation occurs at the second
pearance and disappearance of chaotic attractors. turning point and consider only the one-dimensional directly
Let us now study the dynamics of the system under variadriven oscillator. At first we expand the atomic potential in
tion of a system'’s parameter. DependingEy) o, andy the  the following form:
system exhibits a large variety of different long-term behav- L 22 12 4 6
ior, e.g., periodic, quasiperiodic, and chaotic motion. In some V(r)=A+3z w5l “— zwgar+0(r). (29
regions of the parameter space several attractors coexist. We . _ . .
cannot expect that all the fine details of the properties of th&Y USing this form the behavior of the oscillator near the
dynamical system have an important relevance for the red['aIN resonance can be stud|eq by using a common perturba-
quantum-mechanical system. But the crucial differences ih/O" theory. We obtain two turning point&ig. 10 given by

the behavior of the semiclassical atom at certain bifurcation 2 ) ’
points influence physical observables calculated from the Eo :7’_+ - (1—§a;< ) (30)
trail wave function[Eq. (7)]. We will point out the essential Ky Bo—w)2 4 0 gz

features in the following at certain places. Let us discuss the
behavior for a fixed external frequenayand varyingg,. A where
bifurcation diagram characterizing the system’s behavior

with respect to the varying parametgg is shown in Fig. 9. 8 N , 3,

In the shown parameter interval the limit cycles can be di- 12794 0a 2(wo= )=\ (wo— )= 797/, (32)
vided into two classes, one-dimensional oscillations along

the polarization direction of the applied electromagnetic fieldThis result will be discussed and compared with numerical
and two-dimensional limit cycles where the second oscillatorcalculations later. With a further increase in the external
perpendicular to the polarization direction is also excitedforce the bifurcation behavior becomes relatively compli-
The one-dimensional oscillation becomes unstable at theated. Figure 9 shows the corresponding bifurcation diagram
turning point atE,=0.139. This solution should become using a stroboscopic Poincasection projected onto thg
stable again at a turning point &= 0.04 in the case of only axes. As mentioned above, for small field amplitudes less
one driven oscillator. But we find that very near to this turn-than 0.04 a.u. there is no coupling between oscillators trans-
ing point, a pitchfork bifurcation occurs where the stableverse and in parallel with the polarization axes of the exter-
two-dimensional oscillation meets the unstable onenal field. The attractor is a symmetric circle in the plane.
dimensional solution. The occurrence of the two-dimensionalf the external force increases, a symmetry breaking bifurca-
oscillation is due to internal resonance between both oscillaion occurs at a pitchfork bifurcation and two limit cycles
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FIG. 10. Bifurcation diagram at w
=0.34 a.u. andy=0.05 a.u.
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occur, which are symmetric to each other. For 0.04 a.ufield results forE;>0.44 a.u. As mentioned above the spec-
<E=0.139 a.u. both solutions coexist in phase space. Atrum of the dipole radiation calculated from the trail wave
Ey=0.214 a.u. the symmetry is broken again due to the genfunction[Eg. (7)] crucially depends on the different kinds of
eration of higher harmonics, so that from each attractor twaattractors. For the one-dimensional single harmonic oscilla-
new ones appear. A further increase in the external forcgons (E,<0.04 a.u. andEy>0.44 a.u.) only one peak at
leads to a torus bifurcation &,>0.311 a.u. Here the dy- the external frequency can be found in the spectrurmi,(t)
namics is characterized by oscillations with incommensuratg |, (0)=0. After the first pitchfork bifurcation
frequencies and thus the trajctory lies on a torus. In certai y . . o
parameter intervals a frequency locking on the torus can b 0.04 a.u<E=<0.214 a.u.) single harmonic radiation
along the y axes is obtained. For field strength of

resolved numerically (Fig. 1. For 0.34 a.sE, . )
<0.353 a.u. the motion of the electron becomes chaotic 214 a.u=Eo<0.311 a.u. peaks at higher frequenames

Outside this interval the system settles on one of the four to§N€N) are observed. In the quasiperiodic regime
arising from the four asymmetric limit cycles. As can be seer(0-311 a.Uu<E<0.368 a.u) many peaks at higher and
in Fig. 11 it may happen that the system jumps to anothelower frequencies appear in the spectrum. For the case of
torus due to the distortion in the chaotic regime. B§  frequency locking one finds peaks at lower frequenciés
>0.368 a.u. a reverse torus bifurcation takes place and th&hereas in the chaotic regime a broad frequency band is
four limit cycles become stable with increasing force. Forobserved. _ _ o _

higher field strength the motion is dominated by the external The discussed bifurcation scenario is a typical one for

force. Thus, a single harmonic oscillation along the externaintermediate external frequencies between 0.25 a.u. and 0.4
a.u. However, these frequencies are not very realistic for ac-

tual experimental conditions. Typical lasers can reach fre-

= g'i_ quencies of about 0.2 a.u. In this frequency regime the elec-
G tron dynamics shows much differences compared to the case
= 927 of higher frequencies. The field strength necessary to free the
g: 0.0 electron decreases with a decreasing frequency, which is in
= -0.21 agreement with the stabilization effects in the Hamiltonian
—0.4- case discussed in the first part. Thus, finite attractors exist
8.813: only for relatively low field strength where only the un-
0.005] coupled single harmonic solution can be found. From a Tay-
< 0.000 lor expansion of the atomic potential one can see that limit
-0.005 cycles with a periodT=n27/@ and arbitraryn should be
:8-812: ] possible. One can check the existence of such additional
0,020 1 limit cycles by integrating the system with a large number of
s om | om | ok dlffe_rent initial gondmons. Eac_h of the attractors ha;; its own
) ) E,(au.) ) basin of attraction. These basins are the sets of initial condi-

tions, which all converge to this particular attractor. But the
FIG. 11. Same as Fig. 7, but in a different representation. Thesize of the basins of attraction of these limit cycles depend
stability is also shown in the form of Lyapunov exponents. strongly on the parameters. Thus, in the higher frequency
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FIG. 12. Basin of attraction in the(t=0)—p,(t=0) plane. FIG. 13. Bifurcation diagram atw=0.22 a.u. and y

y(t=0)—py(t=0) are set to zero. Limit cycles with period 1 =0.05 a.u.

(black dot$, 2 (gray dots, 3 and 4(white areaare shown. The field

parameters arg;=0.1 a.u. and»=0.4 a.u.. lines to those of the coupled motions. The different types of
. - . . . bifurcations are denoted by different letters. The analytical
regime the "”?'t cycles with hlgher perlods_ cannot be pb'predictions for the two branches of turning points obtained
served numerically due to their small basins of attractlonfrom Eq.(30) are also showithin solid line. The agreement

Similar results have been found for mechanical oscillator%v- . . . h
) ) th the numerical calculations is very good. With E0
[28]. For frequencies around 0.2 a.u. subharmonic reso%ﬁI . ! uiat 'S Very 9 ith E80)

nances can be obtained. In Fig. 12 we show such a basin e can compare the shape of the two bifurcation lines for the
’ ‘ . iff ialgFig. 15. Th havior for th
attraction forow=0.23 andEy=0.1. The boundaries of the ree different potentialsFig. 19 e_behavior for the

basins of attraction have a fractal structure with a box count“ﬁxed width” approximation and for the SAA potential is, in
. . . . principle, the same whereas the branches for the “soft-core”
ing dimensiondy=1.733+0.003, which has been computed i b

) h . 9. Th I b potential are much more different. This is due to the differ-
using the uncertainty exponef29]. Thus a small perturba- ¢ -oq in the linear coefficient obtained from an expansion of

tion leads to a transition between. the_Iimit cyqles. This ha%he potentia[see Fig. 1b)]. The such as structures like the
some consequences for the quasistatic tunneling model Pr%nold tongues, which have to be situated at linecannot

h 1 K ith " ®be resolved by our numerical techniques. However, the fre-
at each time step a wave packet with positive energy I3 ency |ocking shown in Fig. 8 indicates the existence of

formed. In this work quantities, SUCh. as, the electron energ ese tongues. Several routes into a chaotic regime are also
spectrum or the spectrum of the emitted light are calculate hown in Fig. 14. For field strengths betweg=0.19 and

from the Coulomb-free wave packet dynamics and averagingozosg a transition occurs via a torus bifurcation in the

the result over time by using the quasistatic tunneling ionizagjca of coupled oscillations. At higher fields the two-

flimensional oscillations undergo a period doubling cascade
due to the action of the Coulomb potential and the surround- 9 P 9

ings (dissipation, the time evolution of the wave packet 05
strongly depends on the initial wave packet parameters ant

the initial phase of the laser field. From Fig. 12 one can see

that in most of the cases the electron will oscillate with the 94
external frequency. But nevertheless there are finite contribu—

. . . . . =
tions to the wave packet motion with higher period lengths. =  ,
If we follow the limit cycles with a higher period thaw/27 e
the transition into the chaotic dynamics occurs via period
doubling. The chaotic attractor disappears again in a bound 02
ary crisis, e.g., the attractor collides with the boundary of its
own basin of attraction. Figure 13 shows such a typical bi-
furcation diagram for a frequency of 0.22 a.u.

The complicated bifurcation behavior makes a detailed
analysis of all bifurcation scenarios in the whole parameter 0.0
space practically impossible. Thus we have to choose inter.
esting pieces to characterize the dynamics of the system. In
the following we only discuss the case of limit cycles with a  F|G. 14. Two-dimensional bifurcation diagram #£0.05 a.u.
period lengthT=2x/w. A rough bifurcation diagram foy ~ Branches of turning point&), simple bifurcation pointsgb), torus
=0.05 is shown in Fig. 14. The solid lines correspond tobifurcation points(c), and period doubling pointéd) are shown.
bifurcations of the one-dimensional oscillations and dottedOnly the tongues at the torus bifurcation line are sketched.

0.1

0.2 0.3 0.4 0.5
@ (a.u.)
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0.6 — T T T T 1 TABLE I. Critical damping constany® for the three different
; 1 potenials andv®“sP for y=0.05.
i ‘)/C wCUsP
- T SAA 0.564 0.523
= 1 Fixed width 0.564 0.523
;c b Soft core 0.425 0.325

cess. But, as we have shown, the influences of the nonlin-
earities of the atomic potential will cause oscillations
transverse to the field direction, which reduce the scattering
probability by many orders of magnitudes. For damping con-
stants larger than® and frequencies larger thayf!sP this
effect plays no role. A comparison of the critical friction
constants and frequencies for a characteristic friction is given

FIG. 15. Branches of two turning points ft=0.05 a.u. forthe in Table |. The “soft-core” potential leads again to much
“fixed width” approximation (solid lineg, SAA potential(dashed different results.
lines), and “soft-core” potential(dotted lines.

. . L B. Influence of noise
at lined,. The uncoupled limit cycles become chaotic via a

period doubling cascade, denoted as tinén the bifurcation Certainly the simple semiclassical atom model studied
diagram. At lower frequencies the torus bifurcation line here fails to describe a real atom embedded in a surrounding,
meets the pitchfork bifurcation line outside the frame of Fig.Which is an open quantum system. However, at present, it
14 and a bifurcation of codimension 2 appears in the twoS€€ms to be hopeless to solve the full density operator equa-
dimensional parameter space. Beyond this point the transfions for real atoms in strong fields and in a heat bath. There-
tion to chaos occurs via period doubling bifurcations. An-fore, drastic approximations are necessary. Many effects,
other important point in Fig. 14 is the so-called cusp point aSuch as, the generation of higher harmor{igy or strong
E,=0.02 and w=0.523 where two branches of turning field photoionizatior{31] can be described by a semiclassi-

points meet. The cusp point can be calculated from(B9). cal approach, where an initial wave packet is propagated by
From the conditiork, = «, follows the classical actiors(q,p) [32]. The fine structure of the

classical dynamics gets lost in this semiclassical technique.
J3 We expect that those properties which survive under a sto-
WoT 5 chastic perturbation may play a role in the semiclassical
propagation of the electron state. In the following, we try to
model the influence of the surrounding heat bath on the atom
3 . . . . . .
2\/5 Y \/— ) by inclusion of a stochastic force into the quasiclassical dy-
(V3y—4wo)”. (32 namical equations. We describe this force by a white noise
term

wCUSP=

Eguspz
27 woa

From this relation a critical damping constant follows

(&(1))=05(&(D§(t"))=2Ds(t—t") 5y, (34
2

o (33) which has to be added to E(R6). Then, the equations of
Y J3 0 motion are of Langevin type,

which corresponds to a critical plasma densify[see Eq. p=— ﬁ_ ypi+&(1). (35)
(27)]. For friction constantdor densities larger than this ' ar; b
critical value, the two turning point bifurcations vanish and

the transverse oscillator is completely damped out. The strength of the stochastic force may be connected with

The amplitudes of oscillations perpendicular to the polar-the damping constant and a formal temperali the heat

ization axes of the external field can exceed 2 a.u. This fact ig&th With the help of the fluctuation-dissipation theorem

of importance for the semiclassical description of higher har- D= ykgT. (36)
monic generation and double ionization of multielectron at-

oms[19,30. Here the electron dynamics after ionization is This stochastic force can also be seen as a simple model for
described by the Coulomb-free motion of a classical particlehe electric microfields in plasmas. In the case of dense
[30] or a wave packdtl9]. At the time of encounter with its plasma, which corresponds to high damping factors, these
parent nucleus inelastic scattering is possible, which is constochastic fields give the main contribution to ionization ef-
nected with recombination leading to the emission of highfects[33]. To study the influence of the noise we calculated
frenquency light. In the case of multielectron atoms remain-again the bifurcation diagram shown in Fig. 9 by using Egs.
ing electrons can also be ionized during the scattering prof9) and (11). The result is shown in Fig. 16. The fine struc-

046228-11



THOMAS POHL, ULRIKE FEUDEL, AND WERNER EBELING

d T T T T T T T d
0.0 0.1 0.2 0.3 04 0.5
E, (au.)
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surrounding fields(dissipation and fluctuationleads to a
dramatic reduction of the rescattering probability, which cru-
cially influences the emission of light and the ionization pro-
cess, as described in the last section.

IV. CONCLUSIONS

We have investigated the dynamics of a one-electron sys-
tem in a nonlinear atomic potential under the action of an
external periodical driving force. We considered a quasiclas-
sical model of the electron dynamics based on the approach
of wave packet dynamics in combination with a “local Ritz
principle.” The results have been compared to the more
familar “soft-core” potential. The advantage of the “soft-
core” potential is the possibility to tune every ground-state
energy wanted. But whereas the “soft-core” potential is in-
troducedad hog the present potential can be derived from a
variational principle using an adiabatic approximation. A
comparison of both potentials showed that differences in the
linear as well as in the nonlinear terms lead to a very differ-
ent electron dynamics. This result demonstrates how impor-

ture, such as the frequency locking on the torus, is comtant the inclusion of finer details into models of atom dynam-

pletely destroyed. But we also see the conservation of symies is. The present model of electron dynamics, which is

metry breaking bifurcations due to resonances of the externddased on variational principles, shows a rich scenario of bi-

field with both the transverse and the parallel oscillator.furcations in dependence on the strength and the frequency
Thus, the combined action of the Coulomb potential and thef the external field.
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